三端磁隧道结的稳定性分析*

王日兴1)2)† 李雪1) 李连1) 肖运昌2) 许思维1)

1) (湖南文理学院师范学院,常德 415000)

2) (湖南文理学院,洞庭湖生态经济区建设与发展省级协同创新中心,常德 415000)

(2019年6月16日收到; 2019年8月13日收到修改稿)

在理论上研究了磁隧道结/重金属层组成的三端磁隧道结中磁性状态的稳定性. 以包含自旋转移矩和自 旋轨道矩的 Landau-Lifshitz-Gilbert (LLG) 方程为基础, 通过对平衡点进行线性稳定性分析, 得到了以钉扎层 磁化向量方向和自旋轨道矩电流密度为控制参数的相图. 相图中包括平面内的进动态和稳定态以及伸出膜 面的进动态和稳定态. 当钉扎层磁化向量在垂直薄膜平面内旋转时, 通过调节钉扎层磁化向量方向, 可以实 现自由层磁化向量从稳定态到进动态的转化. 当钉扎层磁化向量在薄膜平面内旋转时, 在钉扎层磁化向量方 向与自由层易磁化轴方向平行或者反平行的结构中, 失稳电流最小, 当钉扎层磁化向量方向逐渐偏离这两个 方向时, 失稳电流不断增加. 调节自旋转移矩电流密度, 可以实现磁化翻转, 在自旋轨道矩的辅助下, 可以减 小翻转时间. 相图的正确性通过画不同磁性状态磁化向量随时间的演化轨迹得到了验证.

关键词:磁化翻转,自旋转移矩,自旋轨道矩,稳定性分析 PACS: 72.25.-b,72.25.Mk,75.60.Jk

DOI: 10.7498/aps.68.20190927

1 引 言

早期磁性随机存储器的数据写入方式依靠磁 场来完成. 1996年, Slonczewski^[1]和 Berger^[2]在理 论上预测了自旋转移效应. 当垂直于钉扎层/隔离 层/自由层组成的三明治自旋阀结构加以电流时, 电流首先获得与钉扎层磁化向量方向相同的自旋 角动量,当其流经隔离层进入到自由层时,由于角 动量守恒,将给自由层磁化向量施加力矩,在此力 矩的作用下,自由层磁化将产生进动^[3],甚至发生 翻转^[4-8]. 2000年,自旋转移效应获得了实验验证^[5], 2004年被成功地应用到磁性隧道结的数据写入^[9]. 自旋转移矩驱动磁化翻转给磁性隧道结的数据写 入带来了一种纯电学的全新写入方式^[10–11]. 由于其 具有非易失性、快速写入和可无限擦写等优点,目 前绝大部分的磁性随机存储器都采用自旋转移矩 的数据写入方式,被称为第二代磁性随机存储器. 然而,随着人们对低功耗和高密度提出的更高要求, 自旋转移矩磁性隧道结遭遇了能量和速度瓶颈问题, 磁性隧道结迫切需要一种新的数据写入方式^[11–14].

近年的实验表明^[15-23],自旋霍尔效应^[24-26]诱 导的自旋矩也可以实现可靠和快速的磁化翻转.在 铁磁层/重金属层组成的双层膜结构中,如果沿重 金属层给此结构施加电流,由于自旋霍尔效应,流经 重金属层的电流将沿垂直方向产生纯的自旋流,从而 给铁磁层磁化向量施加一个力矩,即自旋轨道矩.与 传统的自旋转移矩比较,自旋轨道矩不仅写入速度更 快,而且几乎可以避免势垒击穿,有望成为新一代的 磁存储技术^[19-23]. Liu等^[17,27,28]还同时考虑自旋转 移矩和自旋轨道矩的作用,设计了磁隧道结/重金 属层组成的三端磁隧道结结构.与传统的二端磁隧 道结装置和自旋阀纳米振荡器相比较,三端磁隧道

* 国家自然科学基金 (批准号: 11704120, 11847159) 和常德市科技局项目 (批准号: 2016KZ22, 2018J048) 资助的课题.

[†] 通信作者. E-mail: wangrixing1982@sina.com

^{© 2019} 中国物理学会 Chinese Physical Society

和输出功率,因此为控制电流驱动的磁动力学提供 了新的自由度,这个简单、可靠和有效的设计或许可 以消除新一代磁随机存储器的主要技术障碍^[11-13,17].

稳定性分析方法[29-40] 是研究磁动力学强有力 的工具,通过稳定性分析方法,不仅可以建立磁性 状态相图,而且可以获得磁化向量在不同磁性状态 之间转化的最小电流密度.尽管学术界对三端磁隧 道结展开了一定的研究,但是对该结构中自旋转移 矩和自旋轨道矩同时驱动的磁化动力学的理论研 究仍然缺乏. 充分利用自旋转移矩和自旋轨道矩各 自的优点,更好地理解三端磁隧道结中磁性状态的 稳定性将为实现新一代的磁性随机存储器的应用 提供有价值的参考. 本文以磁隧道结/重金属层组 成的三端磁隧道结为理论模型,同时考虑自旋转移 矩和自旋轨道矩的作用,对该结构中磁性状态的稳 定性进行了理论分析. 通过对包括自旋转移矩和自 旋轨道矩的基于宏自旋近似的 Landau-Lifshitz-Gilbert (LLG) 方程进行线性化展开, 然后对方程 的平衡点进行稳定性分析,获得了钉扎层磁化向量 方向在不同平面旋转时的相图. 通过数值求解微分 方程的方法,给出了相图中不同区域的磁化向量随 时间的变化关系,从而验证了相图的正确性.

2 线性化展开

图 1 为本文所研究的磁性隧道结/重金属层组 成的三端磁隧道结的理论模型和坐标系,坐标系 的 *x-y* 平面沿多层膜的膜面,垂直于膜面的方向为 *z* 轴. 在磁性隧道结中,两铁磁层被中间的隔离层 所隔开,上面较厚的铁磁层是钉扎层,其磁化沿易 磁化轴方向且被固定.下面较薄的铁磁层是自由 层,其易磁化沿 *x* 轴方向.自由层下面是重金属层.

图 1 理论模型和坐标系

如果垂直于三端磁隧道结结构和沿金属层膜面同 时给三端磁隧道结施加电流时,由于局域磁矩和自 旋极化电流的相互作用,垂直于三端磁隧道结结构 的电流将会给自由层磁化向量施以自旋转移矩.同 时,由于自旋霍尔效应,沿重金属层膜面施加的电 流会给自由层磁化向量施加自旋轨道矩.基于宏自 旋近似,三端磁隧道结中自由层磁化向量的磁动力 学可以用以下 LLG 方程来描述^[1,2]:

$$\frac{\mathrm{d}m}{\mathrm{d}\tau} = \boldsymbol{m} \times \frac{\partial \varepsilon}{\partial \boldsymbol{m}} + \alpha \boldsymbol{m} \times \frac{\mathrm{d}\boldsymbol{m}}{\mathrm{d}\tau} + \frac{J_{\mathrm{STT}}}{J_{\mathrm{p}}} \frac{\boldsymbol{m} \times (\boldsymbol{m} \times \boldsymbol{m}_{\mathrm{p}})}{1 + \lambda \boldsymbol{m} \cdot \boldsymbol{m}_{\mathrm{p}}} \\
+ \frac{J_{\mathrm{SHE}}}{J_{\mathrm{h}}} \boldsymbol{m} \times (\boldsymbol{m} \times \hat{\boldsymbol{y}}), \qquad (1)$$

式中, m为自由层的磁化向量. $m_p = (p_x, p_y, p_z) =$ $(\sin \theta_{\rm p} \cos \phi_{\rm p}, \sin \theta_{\rm p} \sin \phi_{\rm p}, \cos \theta_{\rm p})$ 为钉扎层的磁化向 量,其中 θ₀和 φ₀分别为钉扎层磁化向量的极角和 方位角. τ 和 ε 为时间和能量, 单位分别为1/(γM_s) 和 $\mu_0 M_s^2$,其表达式分别为 $\tau = \gamma M_s t$, $\varepsilon = Q/2(1 \sin^2\theta\cos^2\phi$) + 1/2 cos² θ , 式中 γ 为旋磁比, M_s 为 自由层的饱和磁化强度, $Q = H_k/M_s$, H_k 为各向 异性场, θ 和 ϕ 为三端磁隧道结自由层磁化向量的 极角和方位角. 磁场能有退磁能和各向异性能. α 为吉尔伯特阻尼常量. J_{STT}为自旋转移矩电流密 度,定义电流从钉扎层流向自由层时为正,反之为 负. 自旋转移矩对应的系数 $J_p = [3(1+P)^3/(2P^{3/2}) 8]e\mu_0 M_s^2 d/\hbar$,其中 P 是自旋极化率, e 是电子的电 荷量, μ0是真空磁导率, d是自由层的厚度, h是约 化普朗克常量. 描述两铁磁层磁化向量方向对自旋 转移矩影响的系数 $\lambda = (1+P)^3/[3(1+P)^3-16P^{3/2}].$ J_{SHE}为自旋轨道矩电流密度,其对应的系数 $J_{\rm h} = 2e\mu_0 M_{\rm s}^2 d/(\hbar\theta_{\rm SH})$,其中, $\theta_{\rm SH}$ 为自旋霍尔角. \hat{y} 为沿 y方向上的单位向量.

利用球坐标系知识将方程 (1) 展开, 可以得到 关于 θ 和 ϕ 的微分方程组:

$$\begin{aligned} \frac{d\theta}{d\tau} &+ \alpha \sin \theta \frac{d\phi}{d\tau} \\ = &- \frac{Q}{2} \sin \theta \sin(2\phi) - \frac{J_{\text{STT}}}{J_{\text{p}}} \frac{p_{\theta}}{1 + \lambda p_{r}} - \frac{J_{\text{SHE}}}{J_{\text{h}}} \cos \theta \sin \phi, \\ &- \alpha \frac{d\theta}{d\tau} + \sin \theta \frac{d\phi}{d\tau} \\ = &- \frac{\sin(2\theta)}{2} (Q \cos^{2} \phi + 1) - \frac{J_{\text{STT}}}{J_{\text{p}}} \frac{p_{\phi}}{1 + \lambda p_{r}} - \frac{J_{\text{SHE}}}{J_{\text{h}}} \cos \phi, \end{aligned}$$

$$(2)$$

式中 $p_r = p_x \sin\theta\cos\phi + p_y \sin\theta\sin\phi + p_z \cos\theta$, $p_\theta =$

 $p_x \cos \theta \cos \phi + p_y \cos \theta \sin \phi - p_z \sin \theta$, $p_{\phi} = -p_x \sin \phi + p_y \cos \phi$, 是钉扎层磁化向量在球坐标系中的三个 组分.

没有电流时,自由层磁化向量稳定在 x 轴或 -x 轴方向.当垂直于钉扎层和沿金属层膜面施加 电流时,自由层磁化向量将产生新的平衡位置(θ_0 , ϕ_0).在微小扰动的作用下,自由层磁化向量将在新 平衡位置附近振动.令 $\theta = \theta_0 + \delta\theta$, $\phi = \phi_0 + \delta\phi$, 其中, $\delta\theta$ 和 $\delta\phi$ 为磁化向量相对于新平衡位置的偏 离,代入方程(2)并保留 $\delta\theta$ 和 $\delta\phi$ 的线性项,可以得 到关于 θ_0 和 ϕ_0 的方程组:

$$\begin{aligned} \frac{J_{\text{STT}}}{J_{\text{p}}} & \frac{p_{\theta}^{0}}{1 + \lambda p_{r}^{0}} + \frac{Q}{2} \sin \theta_{0} \sin(2\phi_{0}) \\ &+ \frac{J_{\text{SHE}}}{J_{\text{h}}} \cos \theta_{0} \sin \phi_{0} = 0, \\ \frac{J_{\text{STT}}}{J_{\text{p}}} & \frac{p_{\phi}^{0}}{1 + \lambda p_{r}^{0}} + \frac{\sin(2\theta_{0})}{2} \left(Q \cos^{2} \phi_{0} + 1\right) \\ &+ \frac{J_{\text{SHE}}}{J_{\text{h}}} \cos \phi_{0} = 0, \end{aligned}$$
(3)

以及关于δθ和δφ的线性微分方程组

$$\frac{\mathrm{d}\delta\theta}{\mathrm{d}\tau} + \alpha \sin\theta_0 \frac{\mathrm{d}\delta\phi}{\mathrm{d}\tau} = f_\theta \delta\theta + f_\phi \delta\phi, - \alpha \frac{\mathrm{d}\delta\theta}{\mathrm{d}\tau} + \sin\theta_0 \frac{\mathrm{d}\delta\phi}{\mathrm{d}\tau} = g_\theta \delta\theta + g_\phi \delta\phi.$$
(4)

式中,

其中

$$\begin{split} f_{\theta} &= -\frac{Q}{2}\cos\theta_{0}\sin(2\phi_{0}) + \frac{J_{\text{STT}}}{J_{\text{p}}}\beta\left(p_{r}^{0} + \lambda\beta p_{\theta}^{0^{2}}\right) \\ &+ \frac{J_{\text{SHE}}}{J_{\text{h}}}\sin\theta_{0}\sin\phi_{0}, \\ f_{\phi} &= -Q\sin\theta_{0}\cos2\phi_{0} \\ &- \frac{J_{\text{STT}}}{J_{\text{p}}}\beta p_{\phi}^{0}\left(\cos\theta_{0} - \lambda\beta p_{\theta}^{0}\sin\theta_{0}\right) \\ &- \frac{J_{\text{SHE}}}{J_{\text{h}}}\cos\theta_{0}\cos\phi_{0}, \\ g_{\theta} &= -\cos(2\theta_{0})\left(Q\cos^{2}\phi_{0} + 1\right) + \frac{J_{\text{STT}}}{J_{\text{p}}}\lambda\beta^{2}p_{\phi}^{0}p_{\theta}^{0}, \\ g_{\phi} &= \frac{Q}{2}\sin(2\theta_{0})\sin(2\phi_{0}) \\ &- \frac{J_{\text{STT}}}{J_{\text{p}}}\beta\left(p_{\phi}^{0\prime} - \lambda\beta p_{\phi}^{0^{2}}\sin\theta_{0}\right) + \frac{J_{\text{SHE}}}{J_{\text{h}}}\sin\phi_{0}, \end{split}$$

$$\begin{split} \beta &= 1/(1+\lambda p_r^0),\\ p_r^0 &= p_x \sin \theta_0 \cos \phi_0 + p_y \sin \theta_0 \sin \phi_0 + p_z \cos \theta_0,\\ p_\theta^0 &= p_x \cos \theta_0 \cos \phi_0 + p_y \cos \theta_0 \sin \phi_0 - p_z \sin \theta_0,\\ p_\phi^0 &= -p_x \sin \phi_0 + p_y \cos \phi_0,\\ p_{\phi}^{0\prime} &= -p_x \cos \phi_0 - p_y \sin \phi_0. \end{split}$$

3 结果与讨论

假设自由层磁化向量绕平衡位置做周期性振动, 令 $\delta\theta = \Delta\theta e^{i\omega t} \pi \delta\phi = \Delta\phi e^{i\omega t}$, 其中 $\Delta\theta \pi \Delta\phi$ 为振幅, 代入方程组 (4), 可得

$$\begin{vmatrix} \mu - f_{\theta} & \alpha \mu \sin \theta_0 - f_{\phi} \\ -\alpha \mu - g_{\theta} & \mu \sin \theta_0 - g_{\phi} \end{vmatrix} = 0, \quad (5)$$

其中 $\mu = i\omega$. 由 (5) 式可得

$$\mu^2 - T\mu + \Delta = 0, \tag{6}$$

其中

$$T = \frac{g_{\phi} + f_{\theta} \sin \theta_0 + \alpha \left(f_{\phi} - g_{\theta} \sin \theta_0 \right)}{(1 + \alpha^2) \sin \theta_0}, \qquad (7)$$

$$\Delta = \left(f_{\theta}g_{\phi} - f_{\phi}g_{\theta}\right) / \left[\left(1 + \alpha^{2}\right)\sin\theta_{0}\right].$$
 (8)

由线性稳定性理论^[33]: 当 $\Delta > 0$ 时, 如果T > 0, 平衡点不稳定, T < 0时, 平衡点稳定; 而当 $\Delta < 0$ 时, 平衡点为鞍点.

下面以具有面内磁各向异性的 FeNi/Co双层 膜为例^[41],通过 (3)式计算新的平衡点,然后根据 (7)式和 (8)式以及线性稳定性理论对新的平衡点 进行稳定性分析.相关的材料参数为^[34,37,39,41]:旋 磁比 $\gamma = 2.2117 \times 10^5$ m/(A·s),阻尼系数 $\alpha = 0.02$, 饱和磁化强度 $M_{\rm s} = 8.8 \times 10^5$ A/m,铁磁层的厚度 d = 3.5 nm,自旋极化率 P = 0.3,各向异性场 $H_k = 8 \times 10^3$ A/m,有效的自旋霍尔角 $\theta_{\rm SH} = 0.3$ ^[18].

3.1 以钉扎层磁化向量极角θ_p和自旋轨道 矩电流密度 J_{SHE}为控制参数的相图

新的平衡位置可以通过解方程组 (3) 获得, 由 (7) 式和 (8) 式以及线性稳定性理论, 可以获得三 端磁隧道结的磁性状态相图.图 2 给出了自旋转移 矩电流密度 $J_{STT} = 0.8 \text{ A}/\mu\text{m}^2 \, \pi \phi_p = 0^\circ$ 时, 以钉 扎层磁化向量的极角 θ_p 和自旋轨道矩电流密度 J_{SHE} 为控制参数的磁性状态相图.图中黑色实线和 蓝色虚线为自由层磁化向量沿 $x \, \pi - x$ 方向的失稳 电流,绿色和红色点虚线为自由层磁化向量沿 z和 -z方向的失稳电流.

图 2 以钉扎层磁化向量极角 θ_p和自旋轨道矩电流密度 *J*_{SHE}为控制参数的相图

Fig. 2. The phase diagram defined in parameter space spanned by the polar angle of pinned-layer magnetization vector $\theta_{\rm p}$ and the current density of spin-orbit torque $J_{\rm SHE}$.

由图 2 可知,当钉扎层磁化向量在垂直于薄膜 平面旋转时,相对于自旋轨道矩,自旋转移矩强度 较大,在驱动三端磁隧道结的磁动力学中起着主导 作用,因此自旋轨道矩电流密度对相图的影响较 小,但通过调节钉扎层磁化向量的方向,我们可以 获得不同的磁性状态.当钉扎层磁化向量在 *x* 轴附 近时,即76.6° < θ_p < 103.6°时,系统为平面内的稳 定态,如果自由层磁化向量的初始磁化方向沿 x轴 时,其最终稳定在 x 轴附近 (quasi-P), 如果沿-x 轴 时,其最终稳定在-x轴附近 (quasi-AP), 定义该区 域为"quasi-P or quasi-AP". 随着钉扎层磁化向量 方向逐渐远离 x 轴方向时, 如果自由层磁化向量初 plane precessional state, IPP), 将其定义为"quasi-P or IPP", 在相图中对应的区域为 66.5° < $\theta_{\rm p}$ < 76.6°和103.6° < θ_p < 113.5°. 随着钉扎层磁化向量 继续远离 $x 轴 方向, 即 26.1^{\circ} < \theta_{\rm p} < 66.5^{\circ}$ 和 $113.5^{\circ} < \theta_{p} < 153.8^{\circ}$ 时,自由层磁化向量表现为伸 出膜面的进动态 (out-of-plane precessional state, OPP). 当钉扎层磁化向量方向在垂直膜面附近, 即 $0^{\circ} < \theta_{p} < 26.1^{\circ}$ 和 153.8° $< \theta_{p} < 180^{\circ}$ 时,自由层 磁化向量为伸出膜面的稳定态 (out-of-plane state, OPS).

为了证明磁性相图的正确性,我们在图 2 中选 取了具有不同钉扎层磁化向量方向的 a, b, c, a', b', c'六点,将其对应的钉扎层磁化向量的极角 θ_p 和自旋轨道矩电流密度 J_{SHE}代入微分方程组 (2), 通过数值方法求解方程组 (2),给出了自由层磁化 向量随时间的变化关系,如图 3 所示.蓝色和红色 线条表示三端磁隧道结自由层磁化向量的初始方 向分别沿 x 和-x 方向.图 3(a) 和 (a')表明当初始

图 3 对于图 2 中不同区域 *a*, *b*, *c*, *a'*, *b'*, *c'*六点,自由层磁化向量随时间的演化轨迹 (a) 和 (a') 准平行稳定态或平面内的进动态; (b) 和 (b') 伸出膜面的进动态; (c) 和 (c') 伸出膜面的稳定态

Fig. 3. The time evolutions of free-layer magnetization vector for six points a, b, c, a', b' and c' in different regions of Fig. 2. (a) and (a') quasi-P or IPP state; (b) and (b') OPP state; (c) and (c') OPS states.

磁化方向沿 *x* 轴时, 自由层磁化向量稳定在 *x* 方向 附近, 而当初始磁化方向沿-*x* 方向时, 自由层磁化 向量为平面内的进动态. 图 3(b) 和 (b') 表明自由 层磁化向量为伸出膜面的进动态, 并且与初始磁化 方向无关. 图 3(c) 和 (c') 为伸出膜面的稳定态, 由 图可知, 自由层磁化向量经过一段时间后最终稳定 在 *z* 轴或-*z* 轴方向, 也与其初始磁化方向无关.

3.2 以钉扎层磁化向量方位角φ_p和自旋轨 道矩电流密度J_{SHE}为控制参数的相图

在图 4 中, 以钉扎层磁化向量方位角 ϕ_p 和自旋轨 道矩 电流密度 J_{SHE} 为控制参数,给出了 $\theta_p = 90^\circ$,自旋转移矩电流密度 $J_{STT} = 1.0 \text{ A}/\mu\text{m}^2$ 时的磁性状态相图.由于自旋转移矩主要在平面内,因此,对于相对小的自旋转移矩电流密度和自旋轨 道矩电流密度很难产生伸出膜面的进动态和伸出 膜面的稳定态.图中蓝色虚线和黑色实线分别为自 由层磁化向量沿 x 和-x方向的失稳电流.由图可 知,如果自由层磁化向量初始磁化方向沿 x轴时,

1.0

0.5

(a)

当钉扎层磁化向量方向在 x 轴或-x 附近时,系统 为平面内的进动态,如果自由层磁化向量初始磁化 方向沿-x 轴时,当钉扎层磁化向量方向在-x 轴附 近时,系统也为平面内的进动态.而且当钉扎层和

图 4 以钉扎层磁化向量方位角 ϕ_p 和自旋轨道矩电流密度 J_{SHE} 为控制参数的相图

Fig. 4. The phase diagram defined in parameter space

图 5 对应图 4 中的"a"点,自由层初始磁化沿 x方向时磁化向量三个分量 m_x,m_y和 m_z在不同自旋矩驱动下随时间的演化 (a)自旋转移矩激发的平面内的稳定态;(b)自旋转移矩驱动磁化翻转;(c)自旋转移矩和自旋轨道矩共同激发的平面内的进动态; (d)自旋转移矩和自旋轨道矩共同驱动磁化翻转

Fig. 5. The time evolutions of three components m_x , m_y and m_z driven by different spin torque in free-layer magnetization vector for point 'a' of Fig. 4 with the initial magnetization along x direction: (a) IPS state excited by spin-transfer torque; (b) magnetization reversal driven by spin-transfer torque; (c) IPP state excited by spin-transfer torque and spin-orbit torque; (d) magnetization reversal driven by spin-transfer torque and spin-orbit torque. 自由层的磁化向量几乎平行或者反平行时,失稳电流最小.这是因为在平行或反平行结构中,自旋转移矩几乎为零.随着钉扎层磁化向量逐渐偏离 *x* 轴和-*x* 轴方向,失稳电流不断增加.

计算发现:在传统的自旋阀或磁隧道结结构 中, 即 $J_{SHE} = 0$, 当钉扎层磁化向量在平行薄膜平 面内旋转且自旋转移矩电流密度较小时,如果自由 层磁化向量的初始磁化方向沿 x轴,系统为平面内 的稳定态,自由层磁化向量最终稳定在 x 轴附近, 增加自旋转移矩电流密度,可以实现磁化翻转.在 三端磁隧道结中,给自由层磁化向量同时施加自旋 转移矩和自旋轨道矩,在自旋轨道矩的辅助下,较 小的自旋轨道矩电流密度可实现系统从稳定态到 平面内进动态的转化. 与传统的自旋转移矩驱动的 磁化翻转相比较,自旋轨道矩辅助磁化翻转可以在 一定程度上减小磁化翻转的时间. 从图 4 中选取 a点,在图5中给出了自由层磁化向量初始磁化方 向沿 x轴时不同自旋矩驱动下磁化向量的分量随 时间的演化轨迹. 图 5(a) 和图 5(b) 为只受自旋转 移矩, 且自旋转移矩电流密度分别为1.0 A/μm² 和 1.5 A/μm², 由图 5(a) 可知, 在较小的自旋转移矩 作用下,系统为平面内的稳定态.增加自旋转移矩 电流密度,经过一段时间,自由层磁化向量从 x 方向翻转到-x方向,如图 5(b) 所示.图 5(c) 和图 5(d) 为对系统额外施加自旋轨道矩且 $J_{SHE} =$ 1.0 A/µm²时自由层磁化向量随时间的演化轨迹, 由图 5(c) 可知, 当自由层磁化向量同时受到自旋 转移矩和自旋轨道矩时,在自旋轨道矩的辅助下, 系统为平面内的进动态,对应于图 4 中的"IPP or quasi-AP"区域. 比较图 5(b) 和图 5(d) 可知, 在自 旋轨道矩的辅助下,磁化翻转的时间大约为原来的 一半.

4 结 论

本文以磁隧道结/重金属层组成的三端磁隧道 结为理论模型,基于宏自旋近似,通过对包含自旋 转移矩和自旋轨道矩项的 LLG 方程进行线性展 开,并对其平衡点进行稳定性分析,得到了以自旋 轨道矩电流密度和钉扎层磁化向量的方向为控制 参数的相图.相图中具有多种不同的磁性状态,例 如:平面内的进动态和稳定态,伸出膜面的进动态 和稳定态.通过画不同磁性状态磁化向量随时间的 变化关系验证了相图的正确性.研究表明:选择不同的钉扎层磁化向量方向为电流驱动的磁化动力 学提供了新的方法.当钉扎层磁化向量方向与自由 层易磁化轴平行或者反平行时,失稳电流最小,当 钉扎层磁化向量方向在薄膜平面内逐渐偏离这两 个方向时,失稳电流增加.通过调节自旋转移矩电 流密度,可以实现磁化翻转,自旋轨道矩的辅助可 以减小磁化翻转的时间.

参考文献

- [1] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1
- $[2] \quad \text{Berger L 1996 Phys. Rev. B 54 9353}$
- [3] Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A, Ralph D C 2003 Nature 425 380
- [4] Myers E B, Ralph D C, Katine J A, Louie R N, Buhrman R A 1999 Science 285 867
- [5] Katine J A, Albert F J, Buhrman R A, Myers E B, Ralph D C 2000 Phys. Rev. Lett. 84 3149
- [6] Zhang L, Ren M, Hu J N, Deng N, Chen P Y 2008 Acta Phys. Sin. 57 2427 (in Chinese) [张磊, 任敏, 胡九宁, 邓宁, 陈 陪毅 2008 物理学报 57 2427]
- [7] Bao J, Xu X G, Jiang Y 2009 Acta Phys. Sin. 58 7998 (in Chinese) [包瑾, 徐晓光, 姜勇 2009 物理学报 58 7998]
- [8] Sun C Y, Wang Z C 2010 Chin. Phys. Lett. 27 077501
- [9] Huai Y, Albert F, Nguyen P, Pakala M, Valet T 2004 Appl. Phys. Lett. 84 3118
- [10] Yuasa S, Hono K, Hu G, Worledge D C 2018 MRS Bulletin 43 352
- [11] Sato N, Xue F, White R M, Bi C, Wang S X 2018 Nature Electronics 1 508
- [12] Cubukcu M, Boulle O, Mikuszeit N, Hamelin C, Brächer T, Lamard N, Cyrille M C, Buda-Prejbeanu L, Garello K, Miron I M, Klein O, de Loubens G, Naletov V V, Langer J, Ocker B, Pietro, Gaudin G 2018 *IEEE Trans. Magn.* 54 9300204
- [13] Taniguchi T 2019 J. Magn. Magn. Mater. 483 281
- [14] Zhao W S, Wang Z H, Peng S Z, Wang L Z, Chang L, Zhang Y G 2016 *Sci. Sin.: Physica, Mechanica & Astronomica* 46 107306 (in Chinese) [赵巍胜, 王昭昊, 彭守仲, 王乐知, 常亮, 张有光 2016 中国科学: 物理学 力学 天文学 46 107306]
- [15] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189
- [16] Liu L Q, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602
- [17] Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555
- [18] Pai C F, Liu L Q, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404
- [19] Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z, Wang K Y 2017 *Nature Mater* 16 712
- [20] Sheng Y, Li Y C, Ma X Q, Wang K Y 2018 Appl. Phys. Lett. 113 112406
- [21] Kwak W Y, Kwon J H, Grünberg P, Han S H, Cho B K 2018 Scientific Reports 8 382
- [22] Wang X, Wan C H, Kong W J, Zhang X, Xing Y W, Fang C,

Tao B S, Yang W L, Huang L, Wu H, Irfan M, Han X F 2018 $Adv.\ Mater.\ 30\ 1801318$

- [23] Zhao X Z, Zhang X Y, Yang H W, Cai W L, Zhao Y L, Wang Z H, Zhao W S 2019 Nanotechnology 30 335707
- [24] Dyakonov M I, Perel V I 1971 Phys. Lett. 35 459
- [25] Hirsch J E 1999 Phys. Rev. Lett. 83 1834
- [26] Zhang S F 2000 *Phys. Rev. Lett.* **85** 393
- [27] Tomasello R, Carpentieri M, Finocchio G 2013 Appl. Phys. Lett. 103 252408
- [28] Wang Z H, Zhao W S, Deng E, Klein J O, Chappert C 2015 Journal of Physics D: Applied Physics 48 065001
- [29] Grollier J, Cros V, Jaffrès H, Hamzic A, George J M, Faini G, Youssef J. Ben, Le Gall H , Fert A 2003 *Phys. Rev. B* 67 174402
- [30] Bazaliy Ya B, Jones B A, Zhang S C 2004 Phys. Rev. B 69 094421
- [31] Smith N, Katine J A, Childress J R, Carey M J 2005 IEEE Trans. Magn. 41 2935
- [32] Morise H, Nakamura S 2005 Phys. Rev. B 71 014439
- [33] Liu B Z, Peng J H 2005 Nonlinear Dynamics (Beijing: High Education Publishing) p34 (in Chinese) [刘秉正, 彭建华 2005

非线性动力学(北京:高等教育出版社)第34页]

- [34] Ebels U, Houssameddine D, Firastrau I, Gusakova D, Thirion C, Dieny B, Buda-Prejbeanu L D 2008 *Phys. Rev. B* 78 024436
- [35] Zhou Y, Bonetti S, Zha C L, Åkerman J 2009 New J. Phys. 11 103028
- [36] He P B, Wang R X, Li Z D, Liu Q H, Pan A L, Wang Y G, Zou B S 2010 Eur. Phys. J. B 73 417
- [37] Wang R X, He P B, Li Z D, Pan A L, Liu Q H 2011 J. Appl. Phys. 109 033905
- [38] Li Z D, He P B, Liu W M 2014 Chin. Phys. B 23 117502
- [39] Wang R X, He P B, Xiao Y C, Li J Y 2015 Acta Phys. Sin.
 64 137201 (in Chinese) [王日兴, 贺鹏斌, 肖运昌, 李建英 2015 物理学报 64 137201]
- [40] Wang R X, Ye H, Wang L J, Ao Z H 2017 Acta Phys. Sin. 66 127201 (in Chinese) [王日兴, 叶华, 王丽娟, 敖章洪 2017 物理 学报 66 127201]
- [41] Houssameddine D, Ebels U, Delaët B, Rodmacq B, Firastrau I, Ponthenier F, Brunet M, Thirion C, Michel J P, Buda-Prejbeanu L D, Cyrille M C, Redon O, Dieny B 2007 Nature Materials 6 447

Stability analysis in three-terminal magnetic tunnel junction^{*}

Wang Ri-Xing $^{1)2}$ [†] Li Xue $^{1)}$ Li Lian $^{1)}$ Xiao Yun-Chang $^{2)}$ Xu Si-Wei $^{1)}$

1) (Normal College, Hunan University of Arts and Science, Changde 415000, China)

2) (Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone,

Hunan University of Arts and Science, Changde 415000, China)

(Received 16 June 2019; revised manuscript received 13 August 2019)

Abstract

Spin-transfer torque-based magnetic random access memory is becoming more and more attractive in industry due to its non-volatility, fast switching speed and infinite endurance. However, it suffers energy and speed bottlenecks, so the magnetic tunnel junction urgently needs a new write scheme. Compared with the spintransfer torque, emerging spin-orbit torque will replace spin-transfer torque as a new write scheme of magnetic storage technology for its faster writing speed and avoiding the barrier breakdown. A three-terminal magnetic tunnel junction consists of magnetic tunnel junction/heavy metal structure offers a promising perspective from a technological point of view in the design of new generation of magnetic random access memory, for it is possible to control the magnetization dynamics through two current densities of spin-transfer torque and the spin-orbit torque. In this paper, the stability of magnetic states in the three-terminal magnetic tunnel junction is studied theoretically. Through linearizing the Landau-Lifshitz-Gilbert equation including the spin-transfer torque and the spin-orbit torque defined in the spherical coordinates, the new equilibrium directions and linear differential equations are obtained. Performing linear stability analysis of the new equilibrium directions, the phase diagrams defined by the direction of pinned-layer magnetization vector and the current density of spin-orbit torque are obtained. Several magnetic states are distinguished in the phase diagram, such as in-plane precessional and stable states, out-of-plane precessional and stable states. When the pinned-layer magnetization vector rotates out of the film plane, through adjusting the direction of pinned-layer magnetization vector, the switching from stable state to precessional one can be realized. Orientating the pinned-layer magnetization vector in the film plane, neither the out-of-plane precession nor stable states emerges for the current density of spin-orbit torque and spin-transfer torque are relatively small. The instability current takes a minimum value with the pinned-layer magnetization vector nearly parallel or antiparallel to the easy axis of free layer and increases with the direction of pinned-layer magnetization vector deviating from these two locations. The magnetization reversal can be realized through adjusting the current density of spin-transfer torque, and the reversal time can decrease greatly under the assisting of spin-orbit torque. By showing the dependence of magnetization vector on the time of different magnetic states, the validity of phase diagram is confirmed. The selecting of the different directions of the pinned-layer magnetization vector provides an alternative way to control the current-driven magnetization dynamics. This will provide useful guide for the application of threeterminal magnetic tunnel junction.

Keywords: magnetization reversal, spin-transfer torque, spin-orbit torque, stability analysis

PACS: 72.25.–b, 72.25.Mk, 75.60.Jk

DOI: 10.7498/aps.68.20190927

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 11704120, 11847159) and the Research Foundation of Science and Technology Bureau of Changde City (Grant Nos. 2016KZ22, 2018J048).

[†] Corresponding author. E-mail: wangrixing1982@sina.com